

Electrifying U.S. Industry

A Technology- and Process-Based Approach to Decarbonization

January 27, 2021

Global Efficiency Intelligence (GEI) and David Gardiner and Associates (DGA) are pleased to announce the release today of their report to the Renewable Thermal Collaborative (RTC): Electrifying U.S. Industry: A Technologyand Process-Based Approach to Decarbonization.

A Technology and Process-Based Approach to Decarbonization

Ali Hasanbeigi, Ph.D. — Global Efficiency Intelligence Lynn A. Kirshbaum, Blaine Collison, and David Gardiner --- David Gardiner & Associates

January 2021

Today's Speakers

Blaine Collison Executive Director Renewable Thermal Collaborative

Steve Skarda **Global Energy** Sustainability Leader Procter & Gamble

Ali Hasanbeigi, PhD Founder & CEO Global Efficiency Intelligence, LLC

Lynn A. Kirshbaum Senior Associate David Gardiner and Associates

Technical Assessment

U.S. Manufacturing Energy Use by End Uses (Trillion Btu)

		Conventional Boiler Use, 1904	Machine Drive, 1762	
			Other Process Use, 331	Process Cooling, 250
Process Heating, 5164	CHP and/or Cogeneration Process, 3828	Direct Uses-Total Nonprocess, 1077	Electro- Chemical Processes, 234	End Use Not Reported, 209

DIG/A David Gardiner and Associates

Source: US DOE 2019- manufacturing energy footprints

Industrial Heat Demand Profile

RENEWABLE THERMAL COLLABORATIVE Global Efficiency Intelligence

Industrial Heat Demand Profile

Two-thirds of process heat is used in the U.S. industry is for applications below 300°C (572°F)

Bottom-up Analysis Method

			Industry
	 Detailed analysis of existing heating system 	1	Aluminum casting
Step1	· Detailed analysis of existing heating system	2	Ammonia
		3	Methanol
		4	Recycled plastic
	 Selection of suitable electrification 		Paper (from virgin
Step2	technology	5	pulp)
)	6	Recycled paper
		7	Container Glass
	 Process integration assessment with new 	8	Steel
Step3	electrified heating technology	9	Beer
Steps		10	Beet Sugar
		11	Milk powder
	 Calculation of changes in energy use and 	12	Wet corn milling
Step 4	GHG emissions and cost implications	13	Soybean oil
			Electrification of all
			industrial boilers

Conventiona	al System Proce	ss		All Electric Process			
Heating Equipment	Electrical Demand (kWh/tonne)	Thermal Demand (kWh/tonne)	Process steps	Electrical Demand (kWh/tonne)	Heating Equipment		
Electrically-powered mixer/crusher	161.0	0.0	Mixing	161.0	Electrically-powered mixer/crusher		
Gas-fired furnace	204.0	1150.0	Melting	860.0	Electric glass melter		
Forehearth and forming equipment	26.0	105.0	Conditioning & Forming	104.0	Electric forehearths		
Gas-fired Anealing lehr	25.0	210.0	Poat Forming(Annealing)	183.0	Electric Anealing lehr		
	416.0	1465.0	Sum	1308.0			
	1881		Total Energy	1308			

Change in total final energy use after electrification in U.S.

Note: This is the technical potential assuming 100% adoption rate.

	2019	2050		
Average unit price of electricity for industry in U.S. (2017 US\$/kWh)	0.072	0.073		
Average _{unit} price of NG for industry in U.S. (2017 US\$/kWh)	0.015	0.020	Global Efficiency Intelligence	DIGA David Gardiner and Associates

Technical Assessment

Industrial Conventional Boilers in the U.S.

Technical Assessment

Electrification of All Industrial Conventional Boilers in the U.S.

Efficiency Intelligence

Electrification of **All Industrial Conventional Boilers** in the U.S.

Change in total final energy use after electrification in U.S.

Electrification of **All Industrial Conventional Boilers** in the U.S.

ange in CO. emissions (kt CO. /vear)

Electrification of **All Industrial Conventional Boilers** in the U.S.

Comparison of energy cost per tonne of steam

Global Efficiency Intelligence

All Sectors' Results for 2050

Change in sector's net CO₂ emissions after electrification in the U.S. in 2050 (kt CO₂/year)

All Sectors' Results for 2050

	Sectors	Change in total final energy use after electrification (TJ/Year)				Change in sector's net CO ₂ emissions after electrification in U.S. (kt CO ₂ /year)			
No.									
		2019	2030	2040	2050	2019	2030	2040	2050
1	Aluminum casting	-2,314	-2,546	-2,800	-3,080	17	-112	-195	-294
2	Paper (from virgin pulp)	-33,995	-32,295	-30,681	-29,147	26,970	9,997	2,075	-5,080
3	Recycled paper	-75,121	-82,634	-90,897	-99,987	4,239	-4,402	-9,827	-16,295
4	Container glass	-5,745	-6,320	-6,952	-7,647	747	-1,240	-2,498	-3,996
5	Ammonia	-22,695	-24,965	-27,461	-30,207	21,868	-779	-14,516	-30,991
6	Methanol	75,688	86,310	96,933	106,228	11,896	5,046	883	-4,275
7	Recycled plastic	-257,955	-283,751	-312,126	-343,338	-19,743	-16,032	-14,508	-12,519
8	Steel (H ₂ DRI EAF)	-123,599	-136,527	-150,024	-154,712	-6,211	-24,022	-35,825	-46,668
9	Beer	-20,591	-22,132	-23,427	-24,660	-92	-669	-1,010	-1,381
10	Beet sugar	-7,801	-8,385	-8,875	-9,342	662	-441	-1,076	-1,775
11	Milk powder	-3,657	-4,023	-4,425	-4,868	-104	-223	-304	-400
12	Wet corn milling	-20,305	-21,825	-23,102	-24,318	3,717	-1,095	-3,853	-6,892
13	Crude soybean oil	-31,732	-34,107	-36,102	-38,002	-46	-1,865	-2,934	-4,100
	Total	-529,824	-573,199	-619,938	-663,079	43,919	-35,837	-83,590	-134,665

Barriers & Opportunities

DIG/A

Types of Barriers and Proposals to Overcome

- Technology
- Knowledge and Education
- Cost
- Financing
- Policy
- Electric Utility Connection and Reliability

Technology: Barriers

Needed Technology Not Commercially Available

not a barrier

- a barrier, but not important
- a barrier, important
- a barrier, very important
- a barrier, the most important

Technology: Proposals

Technology RD&D

= would not help

- might be effective
- effective
- very effective
- the most effective

Knowledge and Education: Barriers

Insufficient Knowledge of Technologies Feasible for Processes

not a barrier

a barrier, but not important

a barrier, important

a barrier, very important

a barrier, the most important

Knowledge and Education: Proposals

Cost: Barriers

not a barrier

a barrier, but not important

a barrier, very important

a barrier, the most important

a barrier, important

13% 0% 35% 22%

Barriers & Opportunities

Cost: Proposals

DG/A David Gardiner and Associates

Policy: Barriers

Policy: Proposals

Action Plan

Key Actions

- Industrial sector
- Governments
- Utilities
- Suppliers of electrification technologies or equipment

Key Actions: Industrial Sector

- The industrial sector should **initiate partnerships** with academia, national labs, think tanks, and other stakeholders to develop or scale electrification technologies.
- Work with stakeholders to educate policymakers, utilities, and financial institutions about the benefits of electrification and what policy, regulatory, and financial support is required to electrify industrial processes.
- **Provide training for employees and contractors** about electrified technologies. Government and utilities should support such training programs.

Key Actions: Governments

Provide incentives for electrification technology development and

demonstration and use the capacity at the U.S. Department of Energy (DOE) national labs to advance electrification technologies for industry.

- Work with utilities to provide financial incentives in the form of tax credits or grants for pilot projects and demonstration of emerging electrification technologies in industry.
- Adopt a variety of **policies and programs** to support industrial electrification.
- Conduct **techno-economic analysis** for all electrification technologies applicable to each industrial subsector using capital cost, operation and maintenance cost, and energy cost.

Global Efficiency Intelligence

Key Actions: Utilities

- Evaluate the demand response (DR) potential that increased electrification in the industrial sector can provide to utilities and its financial implications.
- **Provide information** about their electric rates, market structures, and grid upgrade implications of industrial electrification.
- Adopt electricity rate designs that encourage electrification.

Thank You.

