Contents

- 1. Introduction
- 2. Summary of the three heat pump tools
- 3. User guides
 - Tool 1: Initial screening
 - Tool 2: High-level feasibility
 - Tool 3: Supplier database

1. Introduction

Note: Enabling macros

Tools 1 and 2 both use macros. It may be necessary to enable 'enable macros' when open excel for the sheets to function.

This can usually be achieved by changing the macro settings in the Microsoft 'Trust Centre'. (File > Options > Trust Cente)

Alternatively download the Tool files to local folder, right-click on the file name, select 'Properties' and check the "Unlock" checkbox at the end _____ (Security option).

Microsoft support - enable macros

Change macro settings in the Trust Center

Macro settings are located in the Trust Center. However, if your device is managed by your work or school the system administrator might prevent anyone from changing settings.

Important: When you change your macro settings in the Trust Center, they are changed only for the Office program that you are currently using. The macro settings are not changed for all your Office programs.

1. Click the File tab.

2. Click Options.

3. Click Trust Center, and then click Trust Center Settings

4. In the Trust Center, click Macro Settings.

General Secu	rrity Details Previous Version	ns
X	RTC Heat Pump Tool 1 - Initia	al screening
Type of file:	Microsoft Excel Macro-Enable	d Worksheet (.xlsm
Opens with:	Excel	Change
Location:	C:\Users\Aaron.Linley\Downlo	ads
Size:	269 KB (275,816 bytes)	
Size on disk:	272 KB (278,528 bytes)	
Created:	15 March 2023, 17:22:31	
Modified:	15 March 2023, 17:22:31	
Accessed:	15 March 2023, 17:33:46	
Attributes:	Read-only Hidden	Advanced
Security:	This file came from anomer computer and might be blocke help protect this computer.	ed to

OK

Cancel

Apply

Failing that...

Refer to the following website: <u>https://www.ablebits.com/office-</u> <u>addins-blog/enable-disable-macros-</u> <u>excel/#:~:text=Click%20the%20File%2</u> <u>0tab%2C%20and%20then%20click%20</u> <u>Options%20at%20the,all%20macros%</u> <u>20and%20click%20OK</u>.

Go to the 'Trust Center Settings' as per image, then 'Trusted Locations'

Click 'Add new location...' and add the location where the file is placed

Change macro settings in the Trust Center

Macro settings are located in the Trust Center. However, if your device is managed by your work or school the system administrator might prevent anyone from changing settings.

Important: When you change your macro settings in the Trust Center, they are changed only for the Office program that you are currently using. The macro settings are not changed for all your Office programs.

1. Click the File tab.

2. Click Options.

3. Click Trust Center, and then click Trust Center Settings.

4. In the Trust Center, click Macro Settings.

verco

1. Summary of tools

RTC Heat Pump project - 3 decision support tools

The RTC Heat Pump project has created **three** tools, designed to answer the common questions when considering the use of heat pumps:

verco

Tool summary

verco

Tool 3: Supplier database

Purpose: provide details of relevant suppliers

Country and technology

- List of relevant suppliers
- Weblinks and contact

Tool 1: Initial screening

Tool 1 user guide – general tool description

The initial screening tool is designed to help identify heat pump options based on only highlevel information about candidate sites. This allows the user to focus down on the sites and technology options most worthy of further investigation.

The tool contains two databases, one of technology applications and the other of case studies. This tool filters these databases according to the user inputs to return potential applications and associated case studies relevant to the chosen sector and input parameters.

The tool can be used to explore options for single sites, or multiple sites with the same thermal processes.

Tool 1 user guide - inputs

First of all, press the **RESET** button to clear previous inputs.

This also resets some cells that can be overwritten.

The tool may not work correctly if this is not done.

Tool 1 user guide - inputs (continued)

Answer questions 1 - 4.

If you can provide details of the heat source and sink, then the outputs will be more specific to your case.

Verco Heat Pump Initial Screening Tool	RENEWABLE THERMAL COLLABORATIVE	
Inputs: Screening questions		
	Please select:	Guidance notes:
	RESET	1ST STEP - USE BUTTON BEFORE STARTING TO RESET TOOL AND ALL INPUTS
1. What sector are in you interested in?	Food and beverage	
2. Do you know the heat source? If yes, please select:	Yes	The application providing the waste heat is known and identified
Heat source	Process cooling	The application creating a waste heat stream
Source medium	Liquid	The medium of waste heat
Source minimum temp (degC)	5	The lowest temperature that the waste heat reaches; i.e. creates a lower b
Source maximum temp (degC)	40	The highest temperature boundary that the waste heat reaches; i.e. create:
3. Do you know the heat sink?	Yes	The application requiring heat is known and identified
If yes, please select:		
Heat sink	Preheating	The application requiring heat
Sink Medium	Liquid	The medium which provides the heating
Sink minimum temp (degC)	20	The lower temperature of heat required; i.e. creates a lower boundary for f
Sink maximum temp (degC)	100	The higher temperature of heat required; i.e. creates an upper boundary for
4. Do you have other system preferences?		
Natural Refrigerant? (Yes/No)	Yes	Are there natural refrigerant requirements?
Low GWP refrigerant? (Yes/No)	Yes	Are there low GWP requirements?

Tool 1 user guide - outputs

Outputs are shown in two tables underneath the input fields:

- Table 1: Relevant available technologies
- Table 2: Case studies

Note that case studies are not available for all possible sector and technology combinations. Table 2 may thus appear blank when less common technology options are selected.

Tool 1 user guide - reference sheets

All reference tabs are shown to the righthand side of the workbook.

These may be of interest in their own right. For example, the complete database of 200+ case studies can be viewed in reference tab 5

	erco i	RENEWABLE								
Casa d	tudy Database	COLLABORATIVE								
	nor used for likering									
		General Building Opera	Continent	- Country	Location	Source	- Link	Year 💌 IHP Make	IHP Model	- Refric
CS1	Chemical and petroleum	Plastici sunthetic rubber manuf		France	Da	Annex 48	https://waermepumpe-izv.de			B1234
CS2	Chemical and petroleum		Europe	Germany	Rehlingen Siersburg	Annex 48	https://www.inepurportechnolo			R407
CS3	Chemical and petroleum		Europe	Germany	Grafenhainichen	Annex 48	https://waermepumpe-izv.de			na
CS4	Chemical and petroleum		Asia	Japan	Tochigi	Annex 48	https://waermepumpe-izv.de			B7441
CSS	Chemical and petroleum	Distillation process of bioethan		Japan	Hokkaido	Annex 48	https://waermepumpe-izv.de			B245f
CS6	Chemical and petroleum		Asia	Japan	Saitama	Annex 48	https://waermepumpe-izv.de			B7441
CS7	Chemical and petroleum	Separation process. Separatin		Netherlands	Gouda	Annex 48	https://waermepumpe-izv.de			na
CS8	Textile, leather etc		Europe	Germany	Mühltroff	Annex 48	https://waermepumpe-izv.de			na
CS9	Textile, leather etc		Europe	Netherlands	Apeldoorn	Annex 48	https://waermepumpe-izv.de			na
CS10	Other Manufacturing		Europe	Austria	Povsdorf	Appey 48	https://waermepumpe-izv.de			B134a
CS11	Other Manufacturing		Europe	Austria	Deutschlandsberg	Appey 48	https://waermepumpe-izv.de			na
CS12	Other Manufacturing		Europe	Austria	Weiz	Annex 48	https://waermepumpe-izv.de			na
CS13	Other Manufacturing		Europe	Austria	Vienna	Annex 48	https://waermepumpe-izv.de			na
CS14	Other Manufacturing		Europe	Depmark	Bierringbro	Appey 48	https://waermepumpe-izv.de			B134a
CS15	Other Manufacturing		Europe	Germany	Emden	Appex 48	https://waermepumpe-izv.de			Fluid X
CS16	Other Manufacturing		Europe	Germany	Bonndorf	Appex 48	https://waermepumpe-izv.de			na
CS17	Other Manufacturing		Europe	Germany	Wernsdorf	Annex 48	https://waermepumpe-izv.de			R404A
CS18	Other Manufacturing		Europe	Germany	NederauGröbern	Appex 48	https://waermepumpe-izv.de			Da
CS19	Other Manufacturing	Metal processing - wires produ		Germany	Aachen	Annex 48	https://waemepumpe-izv.de			B134a
CS20	Other Manufacturing		Europe	Germany	Zerbst	Appex 48	https://waermepumpe-izv.de			na
CS21	Other Manufacturing		Europe	Germany	Neustack (Wied)	Appex 48	https://waermepumpe-izv.de			Da
CS22	Other Manufacturing		Europe	Germany	Burghaslach	Appex 48	https://waermepumpe-izv.de			B134a
CS23	Other Manufacturing		Europe	Germany	Schwaebisch Hall	Annex 48	https://waernepumpe-izv.de			R404a
CS24	Other Manufacturing		Europe	Germany	Kaufbeuren	Annex 48	https://waermepumpe-izv.de			R134a
CS25	Other Manufacturing		Europe	Germany	Bargteheide	Appex 48	https://waermepumpe-izv.de			B134a
CS26	Other Manufacturing	Machinery-dry process of trans		Japan	Tochigi	Appex 48	https://waermepumpe-izv.de			B134a
CS27	Other Manufacturing	Machinery-oleaning process		Japan	Mie	Appex 48	https://waermepumpe-izv.de			B2456
CS28		Process heat for hardening process		Switzerland	Egerkingen	Aramis	https://www.aramis.admin.ch/			R134a
CS29	Other Manufacturing		Europe	Switzerland	Grüsch	Aramis	https://www.aramis.admin.ch/		SK 190S MPC	B134a
CS30	Food and beverage		Europe	Austria	Hobenems	Appex 48	https://waermepumpe-izv.de		SK 1993 WHO	B134a
CS31	Food and beverage		Europe	Austria	Dombin	Appex 48	https://waermepumpe=izv.de			B717 (A
CS32	Food and beverage		Europe	Austria	Asten	Annex 48	https://waermepumpe=izw.de			NH3/C
CS33	Food and beverage	Dairy: Drving air for milk powder		Depmark	Videbaek	Annex 40 Annex 48	https://waermepumpe=izv.de			B717 a
CS34	Food and beverage		Europe	Erange	Moret sur Loing	Annex 48	https://waermepumpe=izv.de			Da.
CS35	Food and beverage	Slaughterhouse - Processing a		France	Montfort-surMeu	Annex 48	https://waermepumpe=izv.de		ThermeCD2 HHP	
CS36	Food and beverage	Manufacture of starch product		France	Bazancoust	Annex 48	https://waermepumpe=izv.de		meineuuz nnr	D2 07991
CS36	Food and beverage Food and beverage		Europe	United Kingdom	Bazancourt Halifas LIK	Annex 48 Annex 48	https://waermepumpe=izv.de https://waermepumpe=izv.de			B717.0
CS38	Food and beverage Food and beverage		Europe	Germany	Halifax, UK Hamburg	Annex 48 Annex 48	https://waermepumpe=izv.de https://waermepumpe=izv.de			B7170
0000	r uou anu bevelage	macproduction	curope	Germany	riamovig	HUDES 40	risps.rivaermepumpenzv.de	9 2010		D124-

Tool Navigation

Reference Tab	Description
Tool Page	User interface. Contains Inputs & Outputs.
0. Dropdowns	Reference page used to populate the 'Tool Page' and create dropdown lists.
1. Heat Source Details	Database of industries and their relevant heat sources. Includes heat source medium and temperature range.
2. Heat Sink Details	Database of industries and their relevant heat sinks. Includes heat sink medium and temperature range.
3. Tech Matrix	Database of heat pump technologies and their characteristics.
4. Refrigerant Details	Database of refrigerants and their properties.
5. Case Study Database	Detailed database of over 200 case studies.

Tool 2: High-level feasibility

Tool 2 user guide – general tool description

The high-level feasibility tool is designed to help with initial solution identification and feasibility at the preliminary stage of a heat pump project. The Tool helps to highlight the variables which effect the performance and output of heat pumps. It achieves this by modelling the operating conditions, distribution complexity, storage requirements / availability and financial variables.

The tool is designed to explore the feasibility of a single technology configuration and country location at a time.

It can used to consider the aggregate cost and benefits of multiple installations of the same type, but generally it is expected that the user will have a specific site in mind in order to input the required parameters and to obtain the most accurate results.

Tool 2 user guide – tool structure

verco

The tool comprises two input sheets, three outputs sheets and further sheets with databases and references.

Two user input	Reference Tab	Description
sheets	Technical Inputs	User interface - inputs only.
	Financial Inputs	User interface - inputs only.
	Feasibility Outputs	Model outputs - technical and financial parameters.
	Implementation check list	Check list - to determine the most effective system.
Three output	Flat file and output records	Database of previous model runs.
sheets	0. Dropdowns	Reference page used to populate other pages and create dropdown lists.
Silects	<u>1. Heat Source Details</u>	Database of industries and their relevant heat sources. Includes heat source medium and temperature range.
	2. Heat Sink Details	Database of industries and their relevant heat sinks. Includes heat sink medium and temperature range.
	3. Tech Matrix	Database of heat pump technologies and their characteristics.
	4. Refrigerant Details	Database of refrigerants and their properties.
	<u>5. Heat Transfer</u>	Database of Specific Heat coefficients (Cp) of different mediums.
Look up lists	<u>6. Carbon Factors</u>	Database of carbon emissions factors for different countries and utilities.
and databases	7. Currencies	Database of currency exchange rates as of 09/06/2022.
	<u>8. CAPEX</u>	Database of capital expenditure of various projects.
	<u>9. Checklists</u>	Master Table highlighting the implementation considerations.

Tool 2 user guide - inputs

When starting, press the **RESET** button to clear previous inputs.

This also resets some cells that can be overwritten.

The tool may not work correctly if this is not done.

The input cells should be self-explanatory.

Primary input - required
Primary input with pre-populated formula for guidance; can be overwritten
Calculation - read only
Output
Key output

verco

Tool 2 user guide – calculation options

Row 72 of the Technical Input sheet allows the user the choice of **Basic** or **Advanced** calculation options.

If average sink flow rate and sink return temperature are known /can be estimated, then the Advanced method is recommended for more accurate results.

If information is lacking, then the Basic calculation option runs the model with more assumptions and fewer user inputs.

Tool 2 user guide – quantitative outputs

The quantitative outputs are all shown on the 'Feasibility outputs' sheet, with further guidance notes where relevant.

Technical and financial outputs are shown on the same sheet.

verco

/erco leat Pump Feasibility Tool	C	RENEWA THERMA COLLAB	L L	
echnical Output				
erformance outputs				
Technology t	vna	AHP		
Generator heat required (k)		1,176,471		
Backup amount requ		29%	Amount of time that th	e generation sup
Backup Natural Gas (kWh)		336,134	Fuel consumed: Total w	ork required to a
Natural Gas displaced (k)	Nh)	2,1		
Natural Gas displaced (%)			Effects of Heat Pump implementar	tion: highlighting carbon reduction both reporting methodologies
HP electricity required (k)	· · ·	1,200 -	and remaining emissions for	both reporting methodologies
Financial Output		1		
CAPEX outputs		1,000 -	341	
Heat Pump CAPEX Cost (\$)	151,693	5		
Distribution CAPEX Cost (\$) Storage CAPEX Cost (\$)	500,000 147,403	≥ 800 -		
Counter CAPEX Cost (\$)	25,000	C02		396
Delayed CAPEX Cost (\$)	100,000	t) su		
One-off subsidy (\$)	0	- 600 –		
Current year CAPEX (£)	774,096	- 008 (tCO2e /yr)		
OPEX outputs		und 400 -	787	
Natural Gas displaced (\$)	1,298,319	Ca		
Electricity increase (\$)	24,966			519
Maintenance estimation (\$/yr)	29,910	200 —		
Avoided OPEX (\$/yr)	5,000			
Cost of carbon displaced (\$)	23,843 0	0 -		
Ongoing subsidy (\$) OPEX saving (\$)	1,272,287		Location based	Market based
Of EX saving (5)	2,212,207		Total emissions after HP	Carbon reduction from HP project

Tool 2 user guide – project cash flows

The currency for the financial analysis is set in the 'general site parameters' section of the 'Technical Inputs' tab.

Project cashflows up to year 10 are shown in a table near the bottom of 'Feasibility outputs' tab. The cash flows are undiscounted.

What are you general site parameters?	
Industry	Food and age
Country	US AV
Currency	\$
Fuel Type	Natural Gas

Project cashflows - undiscounted and without inflation

;
50,35
03,29
34,40
36,29
-5,00
12,76
(
(
(
(
50,35
87,89

Tool 2 user guide – sensitivity table

At the bottom of 'Feasibility Outputs' tab there is a sensitivity analysis table showing how simple payback period varies due to changes in fuel and electricity prices.

Users enter percentage variations (relative to the previously-entered electricity and fuel prices) clicks the REFRESH button to populate the table with the respective payback periods.

Tool 2 user guide – implementation check list

The 'implementation check list' sheet provides practical guidance to refine the initial feasibility and to progress the project concept towards detailed feasibility work.

The objective is to identify and consider all the key issues which may present barriers at the earliest stage possible, before significant time or resources have been spent.

The recommendations are tailored to the application in question, drawing from the full check list database contained in reference sheet 9. 'Checklists'.

verco

Tool 2 user guide – Flat file and output records

The 'Flat file and output records' sheet summarises all the input and output fields in one place for easy export.

There are unlocked columns (column G and to the right) for the user to paste the results of previous model runs alongside the 'live' model outputs for comparison.

	F					
	ATIVE					
eat Pump Export						
cords of previous model runs					Records of previous model runs	
				1	Paste as values Column F into this tab	
nput Name Class1	Class	:2	Units	Value	[insert project name] [i	
Industry General I				Food and beverage		
Country General I				US Average		
Currency General I				/ s		
Annual electricity consumption (kWh) General I	Inputs		kWh	1,000,000	12,500,000	
Current electricity cost (\$/kWh) General I	Inputs		\$/kWh	0.190	0.250	
Market based grid electricity factor (kgCO2e /kWh) General I	Inputs		kgCO2e/kWh	0.0000	0.000	in the second
Fuel Type General I	Inputs		1	Natural Gas	Natural Gas	
Annual Natural Gas consumption (kWh) General I	Inputs		kWh	5,000,000	6,000,000	
Current Natural Gas cost (\$/kWh) General I	Inputs		\$/kWh	0.600	0.600	
Market based fuel factor (kgCO2e /kWh) General I	Inputs		kg@Ó2e/kWh	0.183	0.183	New York Control of the Second Sec
Current heat generation efficiency (%) General I		,	ŕ	80%	80%	
Natural Refrigerant? (Yes/No) General I				No		
Low GWP refrigerant? (Yes/No) General I		1		No		
Application Technical		Source Input		Process cooling		
Application medium Technical		Source Input	kJ/kg.K	Water 4.182		
Medium's specific heat capacity (kJ/kg.K) Technical		Source Input				la de la companya de
Min temp - sense check only (degC) Technical	al Inputs Heat	Source Input	°c	5		N. AND
Max temp - sense check only (degC) Technical	al Inputs Heat	Source Input	°c	40		
Average source return temperature (degC) Technical	al Inputs Heat	Source Input	°c	90		
Average source flow temperature (degC) Technical	al Inputs Heat	Source Input	°c	70		No. 1997 No.
Heat availability / demand Technical	al Inputs Heat	ource Input		Batch		
Technical	al Inputs Heat					
Technical		Records of prev	ious mo	del runs		
Average heat provided Technical						
Application Technical		Dente an untra	C-1	E trans abits and		when the difference and in the second second
Application medium Technical	al Inputs Heat	Paste as values	Column	F Into this tab	ie to recora the res	ults of different projects or scenarios
		[insert proj	iect nam	el fi	nsert project name] [insert project name]
			12.5	500,000		
			,-			
				0.250		
				0.000		
			Natur	al Gas		
			6.0	000 000		

Tool 3: Supplier database

Tool 3 user guide - general tool description

Tool 3 is designed to help identify suitable manufacturers and suppliers that can deliver services in the following areas:

- 1) Equipment manufacturing
- 2) Design and engineering
- 3) Supply, installation, and commissioning
- 4) Ongoing operation and maintenance support

This tool filters by the country the project is based in and the technology of interest, providing contact details and website links for the most appropriate manufacturers and providers.

Tool 3 user guide - inputs

This tool requires two inputs in order to find appropriate manufacturers and suppliers:

- 1) The country the project is based in e.g. Thailand
- 2) The technology of interest e.g., mechanical compression

Verco Manufacturer & Supplier Identifier	COLLABORATIVE
Screening questions (inputs)	
	Please select: Guidance notes:
Country	Thailand Which country is the project based in?
Technology	Mechanical compression Select the technology of interest
Manufacturers & Suppliers (output)	

Manufacturer	Technology	Engineering design	Supply, install & commissioning	Ongoing support
GEA	Mechanical compression	GEA	GEA	GEA
MAN	Mechanical compression	MAN	MAN	MAN
Mayekawa	Mechanical compression	0	0	Mayekawa
Rank	Mechanical compression	Rank	Rank	0

Contacts - Manufacturers & Suppliers (output)

Manufacturer	Wesbite	Email Contact	
GEA	https://www.gea.com/en/products/refrigeration-heating	/he	0
MAN	https://www.man-es.com/process-industry/campaigns/indu.james.pullen@man-es.com		
Mayekawa	https://www.mayekawa.com/products/heat_pumps/	tony.bilham@mayekawa.uk	
Rank	https://www.rank-orc.com/	jpmarti@rank-orc.com	

Tool 3 user guide - outputs

Using the inputs provided by the user the tool calculates the following outputs:

1) Table of suitable manufacturers & suppliers and their areas of operation, e.g. engineering design, ongoing support

2) Email contacts and website links to the manufacturers and suppliers identified

Verco Manufacturer & Supplier Identifier						
Screening questions (inputs)						
Country Technology Manufacturers & Suppliers (output) Please select: Guidance notes: Guidance notes: Select the project based in? Select the technology of interest						
Manufacturer	Technology Engineering desig	n Supply, install & commission	ing Ongoing support			
GEA	Mechanical compressio GEA	GEA	GEA			
MAN	Mechanical compressio MAN	MAN	MAN			
Mayekawa	Mechanical compressio 0	0	Mayekawa			
Rank	Mechanical compressio Rank	Rank	0			
Contacts - Manufacturers & Suppliers (output)						
Manufacturer	Wesbite	Email Contact				
GEA	https://www.gea.com/en/products/refrigeration-heating/he 0					
MAN	https://www.man-es.com/process-industry/campaigns/indu:james.pullen@man-es.com					
Mayekawa	https://www.mayekawa.com/products/heat_pumps/ tony.bilham@mayekawa.uk					
Rank	https://www.rank-orc.com/	jpmarti@rank-orc.com				

