

RENEWABLE THERMAL COLLABORATIVE

verco

RTC Heat pump project - tools user guide

Version 1.1 15th March 2022

Contents

- 1. Introduction
- 2. Summary of the three heat pump tools
- 3. User guides
 - Tool 1: Initial screening
 - Tool 2: High-level feasibility
 - Tool 3: Supplier database

1. Introduction

About Renewable Thermal Collaborative (RTC)

The Renewable Thermal Collaborative (RTC) is the global coalition for companies, institutions, and governments committed to scaling up renewable heating and cooling at their facilities, dramatically cutting carbon emissions. RTC members recognize the growing demand and necessity for renewable heating and cooling and the urgent need to meet this demand in a manner that delivers sustainable, cost-competitive options at scale. The RTCs visions is to:

- Educate all parties about the urgent need to address renewable options for thermal energy
- Identify market barriers to renewable thermal technologies
- Enable the delivery of cost-competitive renewable thermal options
- Improve the marketplace and financing for renewable thermal technologies
- Develop a long-term vision for scaling up renewable thermal technologies in the United States and globally

About the RTC Heat Pump Project

The RTC Heat Pump Project ran from March to September 2022. It was a collaborative project between RTC, a group of RTC member companies and Verco, a leading energy software and consultancy company.

The objective of the project was to support the identification, first appraisal and subsequent implementation of heat pumps in industrial applications through provision of simple decision support tools.

Contact details

Blaine Collison, RTC Executive Director, David Gardiner and Associates – Blaine@dgardiner.com Andy Todd, Director, Verco – Andrew.todd@vercoglobal.com Aaron Linley, Senior Consultant, Verco – aaron.linley@vercoglobal.com Tim Crozier-Cole, Technical Director, Verco – tim.crozier-cole@vercoglobal.com

Note: Enabling macros

Tools 1 and 2 both use macros. It may be necessary to enable 'enable macros' when open excel for the sheets to function.

This can usually be achieved by changing the macro settings in the Microsoft 'Trust Centre'. (File > Options > Trust Cente)

Alternatively download the Tool files to local folder, right-click on the file name, select 'Properties' and check the "Unlock" checkbox at the end – (Security option).

Microsoft support - enable macros

Change macro settings in the Trust Center

Macro settings are located in the Trust Center. However, if your device is managed by your work or school the system administrator might prevent anyone from changing settings.

Important: When you change your macro settings in the Trust Center, they are changed only for the Office program that you are currently using. The macro settings are not changed for all your Office programs.

1. Click the File tab.

2. Click Options.

3. Click Trust Center, and then click Trust Center Settings

4. In the Trust Center, click Macro Settings.

General Secu	rity Details Previous Version	ns
X	RTC Heat Pump Tool 1 - Initia	al screening
Type of file:	Microsoft Excel Macro-Enable	ed Worksheet (.xlsm)
Opens with:	Excel	Change
Location:	C:\Users\Aaron.Linley\Downlo	ads
Size:	269 KB (275,816 bytes)	
Size on disk:	272 KB (278,528 bytes)	
Created:	15 March 2023, 17:22:31	
Modified:	15 March 2023, 17:22:31	
Accessed:	15 March 2023, 17:33:46	
Attributes:	Read-only Hidden	Advanced
Security:	This file came from another computer and might be blocke help protect this computer.	ed to VINDlock

OK

Cancel

Apply

Failing that...

Refer to the following website: <u>https://www.ablebits.com/office-</u> <u>addins-blog/enable-disable-macros-</u> <u>excel/#:~:text=Click%20the%20File%2</u> <u>0tab%2C%20and%20then%20click%20</u> <u>Options%20at%20the,all%20macros%</u> <u>20and%20click%20OK</u>.

Go to the 'Trust Center Settings' as per image, then 'Trusted Locations'

Click 'Add new location...' and add the location where the file is placed

Change macro settings in the Trust Center

Macro settings are located in the Trust Center. However, if your device is managed by your work or school the system administrator might prevent anyone from changing settings.

Important: When you change your macro settings in the Trust Center, they are changed only for the Office program that you are currently using. The macro settings are not changed for all your Office programs.

1. Click the File tab.

2. Click Options.

5. Make the sel

3. Click Trust Center, and then click Trust Center Settings.

4. In the Trust Center, click Macro Settings.

1. Summary of tools

RTC Heat Pump project - 3 decision support tools

The RTC Heat Pump project has created **three** tools, designed to answer the common questions when considering the use of heat pumps:

Tool summary

Tool 1: Initial screening

Tool 1 user guide – general tool description

The initial screening tool is designed to help identify heat pump options based on only highlevel information about candidate sites. This allows the user to focus down on the sites and technology options most worthy of further investigation.

The tool contains two databases, one of technology applications and the other of case studies. This tool filters these databases according to the user inputs to return potential applications and associated case studies relevant to the chosen sector and input parameters.

The tool can be used to explore options for single sites, or multiple sites with the same thermal processes.

Tool 1 user guide - inputs

First of all, press the **RESET** button to clear previous inputs.

This also resets some cells that can be overwritten.

The tool may not work correctly if this is not done.

Tool 1 user guide - inputs (continued)

Answer questions 1 - 4.

If you can provide details of the heat source and sink, then the outputs will be more specific to your case.

verco		
Heat Pump Initial Screening Tool		
Inputs: Screening questions		
	Please select:	Guidance notes:
	RESET	1ST STEP - USE BUTTON BEFORE STARTING TO RESET TOOL AND ALL INPUTS
1. What sector are in you interested in?	Food and beverage	
2. Do you know the heat source? If yes, please select:	Yes	The application providing the waste heat is known and identified
Heat source	Process cooling	The application creating a waste heat stream
Source medium	Liquid	The medium of waste heat
Source minimum temp (degC)	5	The lowest temperature that the waste heat reaches; i.e. creates a lower b
Source maximum temp (degC)	40	The highest temperature boundary that the waste heat reaches; i.e. creates
3. Do you know the heat sink?	Yes	The application requiring heat is known and identified
If yes, please select:		
Heat sink	Preheating	The application requiring heat
Sink Medium	Liquid	The medium which provides the heating
Sink minimum temp (degC)	20	The lower temperature of heat required; i.e. creates a lower boundary for f
Sink maximum temp (degC)	100	The higher temperature of heat required; i.e. creates an upper boundary for
4. Do you have other system preferences?		
Natural Refrigerant? (Yes/No)	Yes	Are there natural refrigerant requirements?
Low GWP refrigerant? (Yes/No)	Yes	Are there low GWP requirements?

Tool 1 user guide - outputs

Outputs are shown in two tables underneath the input fields:

- Table 1: Relevant available technologies
- Table 2: Case studies

Note that case studies are not available for all possible sector and technology combinations. Table 2 may thus appear blank when less common technology options are selected.

Tool 1 user guide - reference sheets

All reference tabs are shown to the righthand side of the workbook.

These may be of interest in their own right. For example, the complete database of 200+ case studies can be viewed in reference tab 5

Case st	udy Database										
paramet	ter used for filtening										
ID 👻	Industrial Sector 🛛 👻	General Building Opera 💌	Continent 🔤	Country 👻	Location 🗾	Source	🔁 Link	Year	 IHP Make 	💌 IHP Model 📑	 Refrige
CS1	Chemical and petroleum	Plastic/ synthetic rubber manuf	Europe	France	na	Annex 48	https://waermepumpe-izv.c	leh 201	9		R1234ze
CS2	Chemical and petroleum	Estraction plant	Europe	Germany	Rehlingen Siersburg	Annex 48	https://heatpumpingtechno	log 200	9		R407
CS3	Chemical and petroleum	Abrasives	Europe	Germany	Grafenhainichen	Annex 48	https://waermepumpe-izv.c	leh 200	01		na
CS4	Chemical and petroleum	Dry process of formed styrol	Asia	Japan	Tochigi	Annex 48	https://waermepumpe-izv.c	leh 201	0 Mayekawa		R744 (C
CS5	Chemical and petroleum	Distillation process of bioethan	Asia	Japan	Hokkaido	Annex 48	https://waermepumpe-izv.c	leh Ni	A		R245fal
CS6	Chemical and petroleum	Dry laminating process	Asia	Japan	Sakama	Annex 48	https://waermepumpe-izv.c	leh 201	5		R744 (C)
CS7	Chemical and petroleum	Separation process, Separatin	Europe	Netherlands	Gouda	Annex 48	https://waermepumpe-izv.c	le/+ 199	5		na
CS8	Textile, leather etc	Printing and dyeing	Europe	Germany	Mühltroff	Annex 48	https://waermepumpe-izv.c	leh 20	11		na
CS9	Textile, leather etc	Washing plant	Europe	Netherlands	Apeldoorn	Annex 48	https://waermepumpe-izv.c	le/+ 199	8		na
CS10	Other Manufacturing	Metal processing	Europe	Austria	Poysdorf	Annex 48	https://waermepumpe-izv.c	le/+ 200	9		R134a
CS11	Other Manufacturing	Electronics	Europe	Austria	Deutschlandsberg	Annex 48	https://waermepumpe-izv.c	le/e 200	5		na
CS12	Other Manufacturing	Automotive industry	Europe	Austria	Weiz	Annex 48	https://waermepumpe-izv.c	le/+ 201	2		na
CS13	Other Manufacturing	Construction industry	Europe	Austria	Vienna	Annex 48	https://waermepumpe-izv.c	le/e 200	3		na
CS14	Other Manufacturing	washing metal items	Europe	Benmark	Bjerringbro	Annex 48	https://waermepumpe-izv.c	leh 20	11		R134a
CS15	Other Manufacturing	Automotive - Paint shop	Europe	Germany	Emden	Annex 48	https://waermepumpe-izv.c	le/+ 201	2		Fluid Xp
CS16	Other Manufacturing	Electronics - electrical drives	Europe	Germany	Bonndorf	Annex 48	https://waermepumpe-izv.c	leh 200	01		na
CS17	Other Manufacturing	Glass	Europe	Germany	Wermsdorf	Annex 48	https://waermepumpe-izv.c	le/+ 200	7		R404A
CS18	Other Manufacturing	Mechanical Engineering	Europe	Germany	NiederauGröbern	Annex 48	https://waermepumpe-izv.c	leh 201	2		na
CS19	Other Manufacturing	Metal processing - wires produ-	Europe	Germany	Aachen	Annex 48	https://waermepumpe-izv.c	leh N/	A		R134a
CS20	Other Manufacturing	Metal processing	Europe	Germany	Zerbst	Annex 48	https://waermepumpe-izv.c	leh 20	11		na
CS21	Other Manufacturing	Metal processing	Europe	Germany	Neustack (Wied)	Annex 48	https://waermepumpe-izv.c	leh 20	11		na
CS22	Other Manufacturing	Plastic production	Europe	Germany	Burghaslach	Annex 48	https://waermepumpe-izv.c	le/+ 201	2		R134a
CS23	Other Manufacturing	Metal processing	Europe	Germany	Schwaebisch Hall	Annex 48	https://waermepumpe-izv.c	le/+ 200	7		R404a
CS24	Other Manufacturing	Plastic production	Europe	Germany	Kaufbeuren	Annex 48	https://waermepumpe-izv.c	leh Ni	A		R134a
CS25	Other Manufacturing	Metal processing	Europe	Germany	Bargteheide	Annex 48	https://waermepumpe-izv.c	leh N/	A		R134a
CS26	Other Manufacturing	Machinery-dry process of trans	Asia	Japan	Toohigi	Annex 48	https://waermepumpe-izv.c	leh Ni	A		R134a
CS27	Other Manufacturing	Machinery-cleaning process	Asia	Japan	Mie	Annex 48	https://waermepumpe-izv.c	le/+ 201	3		R245fa
CS28	Iron and steel non-ferrous met	Process heat for hardening pro	Europe	Switzerland	Egerkingen	Aramis	https://www.aramis.admin.o	h/C 201	3 CTA AG		R134a
CS29	Other Manufacturing	Production	Europe	Switzerland	Grüsch	Aramis	https://www.aramis.admin.o	h/C 201	0 SCMFrigo	SK 190S WPC	R134a
CS30	Food and beverage	Meat processing	Europe	Austria	Hohenems	Annex 48	https://waermepumpe-izw.c	le/+ 199	6		R134a
CS31	Food and beverage	Brevery	Europe	Austria	Dombirn	Annex 48	https://waermepumpe-izv.c	le/+ 200	5		B717 (N
CS32	Food and beverage	Deep freeze food	Europe	Austria	Asten	Annex 48	https://waermepumpe-izv.c	le/+ 200	7		NH3/ O
CS33	Food and beverage	Dairy: Drying air for milk powder	Europe	Denmark	Videbaek	Annex 48	https://waermepumpe-izv.c	le/+ 201	2		R717 at
CS34	Food and beverage	Distilleries	Europe	France	Moret sur Loing	Annex 48	https://waermepumpe-izv.c	le/+ 201	7		na
CS35	Food and beverage	Slaughterhouse - Processing a	Europe	France	Montfort-surMeu	Annex 48	https://waermepumpe-izv.o	eh 20	11 ENGIE	ThermeCO2 HHR	2 R744 (0
CS36	Food and beverage	Manufacture of starch product	Europe	France	Bazancourt	Annex 48	https://waermepumpe-izv.o	le/+ 201	6		na
CS37	Food and beverage	Chocolate manufact.	Europe	United Kingdom	Halifax, UK	Annex 48	https://waermepumpe-izv.o	le/+ 201	0		B7170
0939	Food and beverage	Malt production	Europe	Germany	Hamburg	Annex 48	https://waermepumperizy.c	eb 201	0		B717 (P

Tool Navigation

Reference Tab	Description
Tool Page	User interface. Contains Inputs & Outputs.
0. Dropdowns	Reference page used to populate the 'Tool Page' and create dropdown lists.
1. Heat Source Details	Database of industries and their relevant heat sources. Includes heat source medium and temperature range.
2. Heat Sink Details	Database of industries and their relevant heat sinks. Includes heat sink medium and temperature range.
3. Tech Matrix	Database of heat pump technologies and their characteristics.
4. Refrigerant Details	Database of refrigerants and their properties.
5. Case Study Database	Detailed database of over 200 case studies.

Tool 2: High-level feasibility

Tool 2 user guide – general tool description

The high-level feasibility tool is designed to help with initial solution identification and feasibility at the preliminary stage of a heat pump project. The Tool helps to highlight the variables which effect the performance and output of heat pumps. It achieves this by modelling the operating conditions, distribution complexity, storage requirements / availability and financial variables.

The tool is designed to explore the feasibility of a single technology configuration and country location at a time.

It can used to consider the aggregate cost and benefits of multiple installations of the same type, but generally it is expected that the user will have a specific site in mind in order to input the required parameters and to obtain the most accurate results.

Tool 2 user guide – tool structure

verco

The tool comprises two input sheets, three outputs sheets and further sheets with databases and references.

iwo user input	_	Reference Tab	Description
sheets		Technical Inputs	User interface - inputs only.
		Financial Inputs	User interface - inputs only.
		Feasibility Outputs	Model outputs - technical and financial parameters.
		Implementation check list	Check list - to determine the most effective system.
Three output		Flat file and output records	Database of previous model runs.
sheets		0. Dropdowns	Reference page used to populate other pages and create dropdown lists.
Sheets		<u>1. Heat Source Details</u>	Database of industries and their relevant heat sources. Includes heat source medium and temperature range.
		2. Heat Sink Details	Database of industries and their relevant heat sinks. Includes heat sink medium and temperature range.
		<u>3. Tech Matrix</u>	Database of heat pump technologies and their characteristics.
		4. Refrigerant Details	Database of refrigerants and their properties.
		5. Heat Transfer	Database of Specific Heat coefficients (Cp) of different mediums.
Look up lists		<u>6. Carbon Factors</u>	Database of carbon emissions factors for different countries and utilities.
and databases		7. Currencies	Database of currency exchange rates as of 09/06/2022.
and ualdbases		<u>8. CAPEX</u>	Database of capital expenditure of various projects.
		<u>9. Checklists</u>	Master Table highlighting the implementation considerations.

Tool 2 user guide - inputs

When starting, press the **RESET** button to clear previous inputs.

This also resets some cells that can be overwritten.

The tool may not work correctly if this is not done.

The input cells should be self-explanatory.

Primary input - required
Primary input with pre-populated formula for guidance; can be overwritten
Calculation - read only
Output
Key output

Tool 2 user guide – calculation options

Row 72 of the Technical Input sheet allows the user the choice of **Basic** or **Advanced** calculation options.

If average sink flow rate and sink return temperature are known /can be estimated, then the Advanced method is recommended for more accurate results.

If information is lacking, then the Basic calculation option runs the model with more assumptions and fewer user inputs.

Tool 2 user guide – quantitative outputs

The quantitative outputs are all shown on the 'Feasibility outputs' sheet, with further guidance notes where relevant.

Technical and financial outputs are shown on the same sheet.

/erco	C	REN THE COL	RMA	BLE L DRATIVE	
eat Pump Feasibility Tool					
echnical Output					
rformance outputs					
Technology t	ype		AHP		
Generator heat required (ky	Vh)	1.17	6.471		
Backun amount requi	red	-,	29%	Amount offices	that the generation sur
Backup Antount requi	100	22	6 134	Amount of time	indi the generation sup
Backup Natural Gas (kv	vn)	0.00	0,154	Fuel consumed:	Total work required to a
Natural Gas displaced (kV	vh)	2,1		Effects of Heat Pump impl	ementation: highlighting carbon reduct
Natural Gas displaced	(%)			and remaining emission	ons for both reporting methodologies
HP electricity required (k)	Vb)	1	1,200 —	0	1 0 0
Financial Output					
			1.000 -		
CAPEX outputs	151 602		_,	341	
Distribution CAPEX Cost (\$)	500 000	1	5		
Storage CAPEX Cost (\$)	147,403	1 0	800 -		
Counter CAPEX Cost (\$)	25,000	004	3		396
Delayed CAPEX Cost (\$)	100,000	1			
One-off subsidy (\$)	0		5 600 -		
Current year CAPEX (£)	774,096				
OPEY outputs			400 -	787	
Natural Gas displaced (\$)	1 298 319	Ę	3		
Electricity increase (S)	24,966				519
Maintenance estimation (\$/yr)	29,910		200 —		
Avoided OPEX (\$/yr)	5,000				
Cost of carbon displaced (\$)	23,843		0		
Ongoing subsidy (\$)	0		0 -	Location based	Market based
OPEX saving (\$)	1,272,287			Location based	ivial Ket based

Tool 2 user guide – project cash flows

The currency for the financial analysis is set in the 'general site parameters' section of the 'Technical Inputs' tab.

Project cashflows up to year 10 are shown in a table near the bottom of 'Feasibility outputs' tab. The cash flows are undiscounted.

Vhat are you general site parameters?	
Industry	Food and age
Country	US AV
Currency	S
Fuel Type	Natural Gas

Project cashflows - undiscounted and without inflation

	Current	1	2	3
Opex	\$ 0	-50,353	-50,353	-50,35
Natural Gas displaced	\$	-203,292	-203,292	-203,29
Electricity increase	\$	134,408	134,408	134,40
Maintenance	\$	36,298	36,298	36,29
Avoided OPEX	\$	-5,000	-5,000	-5,00
Cost of carbon displaced	\$	-12,767	-12,767	-12,76
Capex	\$ 838,953	0	0	
Heat Pump	\$ 250,484	0	0	(
Distribution	\$ 500,969	0	0	(
Storage	\$ 112,500	0	0	(
Counter	\$ -25,000	0	0	
Delayed	\$ 0	0	0	
Subsidy	\$ 0	0	0	
One-off subsidy	\$ 0	0	0	(
Ongoing subsidy	\$	0	0	
Net Savings	\$ 838,953	-50,353	-50,353	-50,35
Cumulative Impact	\$ -838,953	-788,601	-738,248	-687,89

Tool 2 user guide – sensitivity table

At the bottom of 'Feasibility Outputs' tab there is a sensitivity analysis table showing how simple payback period varies due to changes in fuel and electricity prices.

Users enter percentage variations (relative to the previously-entered electricity and fuel prices) clicks the REFRESH button to populate the table with the respective payback periods.

Tool 2 user guide – implementation check list

The 'implementation check list' sheet provides practical guidance to refine the initial feasibility and to progress the project concept towards detailed feasibility work.

The objective is to identify and consider all the key issues which may present barriers at the earliest stage possible, before significant time or resources have been spent.

The recommendations are tailored to the application in question, drawing from the full check list database contained in reference sheet 9. 'Checklists'.

V In	Provident and the second secon	neck List	
ID	Consideration category	Consideration summary	Detail
1	Technology selection	Additional electrical demand	Heat pumps based on mechanical compression have a significant elec demand will need to be supplied by the existing site infrastructure or be considered as part of the integration costs. Typically heat pumps w large installations higher voltage supplies may need to be considered
2	Technology selection	Back-up solution when heat pump is not available	On some sites, it is possible to install a heat pump, but not one that m limit on the available electricity supply). Other sites where heat is bei operation a high level of resilience is required. It is likely that a backu time where either the heat source is not available or the heat pump is system that uses another heat source as well is called a bivalent syst In most applications the existing heat / hot water system is not being heat exchanger on the supply side of the heat pump is probably the ea considered if the existing plant has reached the end of its economic life
3	Technology selection	Is the use of natural	Heat pumps based on mechanical compression will utilise a refrigerat

Tool 2 user guide – Flat file and output records

The 'Flat file and output records' sheet summarises all the input and output fields in one place for easy export.

There are unlocked columns (column G and to the right) for the user to paste the results of previous model runs alongside the 'live' model outputs for comparison.

	EWABLE RMAL LABORATIVE					
t Pump Export						
rds of previous model runs					Records of previous model runs	
				1	Paste as values Column F into this tab	N. Contraction of the second
ut Name	Class1 Cla	ass2	Units	Value	[insert project name] [i.	
Industry	General Inputs			Food and beverage		
Country	General Inputs			/ US Average		
Currency	General Inputs			i s		
Annual electricity consumption (kWh)	General Inputs		kWh	1,000,000	12,500,000	
Current electricity cost (\$/kWh)	General Inputs		\$/kWh	0.190	0.250	
Market based grid electricity factor (kgCO2e /kWh)	General Inputs		kgCO2e/kWh	, 0.0000	0.000	
Fuel Type	General Inputs		1	Natural Gas	Natural Gas	
Annual Natural Gas consumption (kWh)	General Inputs		kWh	5,000,000	6,000,000	
Current Natural Gas cost (\$/kWh)	General Inputs		5/kWh	0.600	0.600	
Market based fuel factor (kgCO2e /kWh)	General Inputs		kg002e/kWh	0.183	0.183	
Current heat generation efficiency (%)	General Inputs	,	ŕ	80%	80%	
Natural Refrigerant? (Yes/No)	General Inputs	1		NO		
Low GWP refrigerant? (Yes/No)	General Inputs	1		NO Decesso section		
Application	Technical inputs He	at source input		Process cooring		
Application mealum	Technical inputs He	at Source Input	ki/ka V	4 192		
weatum's specific near capacity (k)/kg.k)	recimical inputs ne	at source input	NJ/Ng.N	4.102		$\sim 10^{-10}$
win temp - sense check only (degC)	Technical Inputs He	at Source Input	°C	5		
Max temp - sense check only (degC)	Technical Inputs He	at Source Input	°C	40		
Average source return temperature (degC)	Technical Inputs He	at Source Input	°c	90		
Average source flow temperature (degC)	Technical Inputs He	at Source Input	°c	70		in the second
Heat availability / demand	Technical Inputs He	at Source Input		Batch		· · · · · · · · · · · · · · · · · · ·
	Technical Inputs He	at				
	Technical Inputs He	Records of prev	ious mo	del runs		
Average heat provided	Technical Inputs He	at				
Application	Technical Inputs He	at	~ .	E transition and		the set of the second sec
Application medium	Technical Inputs He	at Paste as values	Column	F Into this tab	ie to recora the res	uits of alfferent projects or scenarios
		[insert proj	ect nam	e] [i	nsert project name] [insert project name]
			12.5	00.000		
			,-	,		
				0.250		
				0.000		
				0.000		
			Natur	al Gas		
			6.0	00 000		

Tool 3: Supplier database

Tool 3 user guide - general tool description

Tool 3 is designed to help identify suitable manufacturers and suppliers that can deliver services in the following areas:

- 1) Equipment manufacturing
- 2) Design and engineering
- 3) Supply, installation, and commissioning
- 4) Ongoing operation and maintenance support

This tool filters by the country the project is based in and the technology of interest, providing contact details and website links for the most appropriate manufacturers and providers.

Tool 3 user guide - inputs

This tool requires two inputs in order to find appropriate manufacturers and suppliers:

- 1) The country the project is based in e.g. Thailand
- 2) The technology of interest e.g., mechanical compression

Verco Manufacturer & Supplier Identifier	COLLABORATIVE
Screening questions (inputs)	
	Please select: Guidance notes:
Country	Thailand Which country is the project based in?
Technology	Mechanical compression Select the technology of interest
Manufacturers & Suppliers (output)	

Manufacturer	Technology	Engineering design	Supply, install & commissioning	Ongoing support
GEA	Mechanical compressi	o GEA	GEA	GEA
MAN	Mechanical compressi	o MAN	MAN	MAN
Mayekawa	Mechanical compressi	o 0	0	Mayekawa
Rank	Mechanical compressi	o Rank	Rank	0

Contacts - Manufacturers & Suppliers (output)

Manufacturer	Wesbite	Email Contact	
GEA	https://www.gea.com/en/products/refrigeration-heating	/he	0
MAN	https://www.man-es.com/process-industry/campaigns/in	ndu: james.pullen@man-es.com	
Mayekawa	https://www.mayekawa.com/products/heat_pumps/	tony.bilham@mayekawa.uk	
Rank	https://www.rank-orc.com/	jpmarti@rank-orc.com	

Tool 3 user guide - outputs

Using the inputs provided by the user the tool calculates the following outputs:

1) Table of suitable manufacturers & suppliers and their areas of operation, e.g. engineering design, ongoing support

2) Email contacts and website links to the manufacturers and suppliers identified

VEICO Manufacturer & Supplier Identifier										
Screening questions (inputs)										
Country Technology	Country Technology Please select: Country Med Al compression		Guidance notes: Which country is the project based in? Select the technology of interest							
Manufacturers & Suppliers (output)										
Manufacturer	Technology	Engineering design	Supply, install & commissioning	Ongoing support						
GEA	Mechanical compressi	o GEA	GEA	GEA						
MAN	Mechanical compressio MAN		MAN	MAN						
Mayekawa	Mechanical compressio 0		0	Mayekawa						
Rank	Mechanical compressi	o Rank	Rank	0						
Contacts - Manufacturers & Suppliers (output)										
Manufacturer	Wesbite		Email Contact							
GEA	https://www.gea.com/	en/products/refrigeration-heating/h	e	0						
MAN	https://www.man-es.c	https://www.man-es.com/process-industry/campaigns/indu.james.pullen@man-es.com								
Mayekawa	https://www.mayekaw	a.com/products/heat_pumps/	tony.bilham@mayekawa.uk							
Rank	https://www.rank-orc.o	.com/	jpmarti@rank-orc.com							

